Skip to main content

Advertisement

Log in

Colourants and opacifiers of mosaic glass tesserae from Khirbet al-Mafjar (Jericho, Palestine): addressing technological issues by a multi-analytical approach and evaluating the potentialities of thermoluminescence and optically stimulated luminescence dating

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The paper discusses data concerning the secondary manufacture technology of a set of opaque coloured early Islamic mosaic glass tesserae from the qasr of Khirbet al-Mafjar (Jericho, Palestine). Archaeological contextualisation of the site had allowed attributing these finds to the Umayyad occupational phase of the building, and an in-depth study of the composition of the glassy matrix had provided evidence of a double supply of glass from Egypt and the Syro-Palestinian coast occurring in the production of the base glass intended to be used for the manufacture of mosaic tesserae. Here, a multi-methodological approach has been carried out to characterise colourants and opacifiers: visible reflectance spectroscopy (VIS-RS), optical microscopy (OM), scanning electron microscopy coupled with energy dispersion analysis (SEM-EDS), micro-Raman spectroscopy (micro-Raman) and X-ray diffraction (XRD) were performed on the opaque tesserae. Moreover, either optically stimulated luminescence (OSL) or thermoluminescence (TL) protocols for luminescence dating were applied on selected samples, with the aim of relating luminescence properties with the geochemical features of the glass tesserae, in the perspective of deepening the studies towards the absolute dating, an unquestionable help to the stimulating challenge of investigating ancient glass manufacture. Tin-based, phosphorus-based and copper-based opacifiers were identified, and the achieved results suggest the use of the same opacifiers and colouring agents regardless of the different base glass. Furthermore, data obtained by TL and OSL protocols revealed useful and stimulating potentialities these techniques could have in dating opaque glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Akridge DG, Benoit PH (2001) Luminescence properties of chert and some archaeological applications. J Archaeol Sci 28:143–151

    Article  Google Scholar 

  • Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054. https://doi.org/10.1016/j.biomaterials.2007.02.028

    Article  Google Scholar 

  • Arletti R, Conte S, Vandini M et al (2011a) Florence baptistery: chemical and mineralogical investigation of glass mosaic tesserae. J Archaeol Sci 38:79–88. https://doi.org/10.1016/j.jas.2010.08.012

    Article  Google Scholar 

  • Arletti R, Dalconi MC, Quartieri S et al (2006a) Roman coloured and opaque glass: a chemical and spectroscopic study. Appl Phys A Mater Sci Process 83:239–245. https://doi.org/10.1007/s00339-006-3515-2

    Article  Google Scholar 

  • Arletti R, Quartieri S, Vezzalini G et al (2008) Archaeometrical analyses of glass cakes and vitreous mosaic tesserae from Messina (Sicily, Italy). J Non-Cryst Solids 354:4962–4969. https://doi.org/10.1016/j.jnoncrysol.2008.07.020

    Article  Google Scholar 

  • Arletti R, Quartieri S, Vezzalini G (2006b) Glass mosaic tesserae from Pompeii: an archeometrical investigation. Period di Mineral 75:25–38

    Google Scholar 

  • Arletti R, Vezzalini G, Fiori C, Vandini M (2011b) Mosaic glass from St Peter’s, Rome: manufacturing techniques and raw materials employed in late 16th-century Italian opaque glass. Archaeometry 53:364–386. https://doi.org/10.1111/j.1475-4754.2010.00538.x

    Article  Google Scholar 

  • Bailiff IK (1994) The pre-dose technique. Radiat Meas 23:471–479

    Article  Google Scholar 

  • Bailiff IK, Haskell EH (1983) The use of the pre-dose technique for environmental dosimetry. Radiat Prot Dosim 6:245–248

    Article  Google Scholar 

  • Barber D, Freestone I, Moulding K (2010) Ancient copper red glasses: investigation and analysis by microbeam techniques. From Mine to Microsc – Adv Study Anc Technol 37:898–899. https://doi.org/10.1016/j.jas.2009.11.021

    Article  Google Scholar 

  • Basso E, Invernizzi C, Malagodi M et al (2014) Characterization of colorants and opacifiers in roman glass mosaic tesserae through spectroscopic and spectrometric techniques. J Raman Spectrosc 45:238–245. https://doi.org/10.1002/jrs.4449

    Article  Google Scholar 

  • Bayley J, Wilthew P (1986) Qualitative and semiquantitative analyses of glass beads. In: Proceedings of the 24th International Archaeometry Symposium. Smithsonian Institution Press, Washington DC, pp 55–62

  • Bonnerot O, Ceglia A, Michaelides D (2015) Technology and materials of Early Christian Cypriot wall mosaics. Jasrep. https://doi.org/10.1016/j.jasrep.2015.10.019

  • Boschetti C, Henderson J, Evans J, Leonelli C (2016) Mosaic tesserae from Italy and the production of Mediterranean coloured glass (4rd century BCE–4th century CE). Part I: Chemical composition and technology. J Archaeol Sci Reports 7:303–311. https://doi.org/10.1016/j.jasrep.2016.05.006

    Article  Google Scholar 

  • Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta - Part A Mol Biomol Spectrosc 59:2247–2266. https://doi.org/10.1016/S1386-1425(03)00069-6

    Article  Google Scholar 

  • Brill RH (1970) The chemical interpretation of the texts. In: Barag D, Brill RH, Oppenheim D, von Saldern A (eds) Glass and glassmaking in ancient Mesopotamia. The Corning Museum of Glass, corning, New York

  • Brill RH, Cahill ND (1988) A red opaque glass from Sardis and some thoughts on red opaques in general. J Glass Stud 30:16–27

    Google Scholar 

  • Cloutis E, Norman L, Cuddy M, Mann P (2016) Spectral reflectance (350-2500 nm) properties of historic artists’ pigments. II. Red-orange-yellow chromates, jarosites, organics, lead(-tin) oxides, sulphides, nitrites and antimonates. J Near Infrared Spectrosc 24:119–140. https://doi.org/10.1255/jnirs.1207

    Article  Google Scholar 

  • Colomban P, Schreiber HD (2005) Raman signature modification induced by copper nanoparticles in silicate glass. J Raman Spectrosc 36:884–890. https://doi.org/10.1002/jrs.1379

    Article  Google Scholar 

  • Colomban P, Tourni?? A, Caggiani MC, Paris C (2012) Pigments and enamelling/gilding technology of Mamluk mosque lamps and bottle. J Raman Spectrosc 43:1975–1984. https://doi.org/10.1002/jrs.4101

  • Colomban P, Tournié A, Ricciardi P (2009) Raman spectroscopy of copper nanoparticle-containing glass matrices: ancient red stained-glass windows. J Raman Spectrosc 40:1949–1955. https://doi.org/10.1002/jrs.2345

    Article  Google Scholar 

  • Croveri P, Fragalà I, Ciliberto E (2010) Analysis of glass tesserae from the mosaics of the “Villa del Casale” near Piazza Armerina (Enna, Italy). Chemical composition, state of preservation and production technology. Appl Phys A Mater Sci Process 100:927–935. https://doi.org/10.1007/s00339-010-5670-8

    Article  Google Scholar 

  • Di Bella M, Quartieri S, Sabatino G et al (2014) The glass mosaics tesserae of “Villa del Casale” (Piazza Armerina, Italy): a multi-technique archaeometric study. Archaeol Anthropol Sci 6:345–362. https://doi.org/10.1007/s12520-013-0172-1

    Article  Google Scholar 

  • Eastaugh N, Walsh V, Chaplin T, Siddall R (2008) Pigment compendium. A dictionary and optical microscopy of historical pigments. Routledge, London

    Google Scholar 

  • Fiorentino S, Chinni T, Cirelli E et al (2017) Considering the effects of the Byzantine–Islamic transition: Umayyad glass tesserae and vessels from the qasr of Khirbet al-Mafjar (Jericho, Palestine). Archaeol Anthropol Sci:1–23. https://doi.org/10.1007/s12520-017-0495-4

  • Fiori C, Vandini M, Mazzotti V (2004) I colori del vetro antico. Il vetro musivo bizantino, Il Prato, Saonara (PD)

    Google Scholar 

  • Freestone I, Gorin-Rosen Y, Hughes M (2000) Primary glass from Israel and the production of glass in Late Antiquity and the Early Islamic period. In: Nenna M-D (ed) La route du verre. Ateliers primaires et secondaires du second millénaire av. J.-C. au Moyen Age. Travaux de la Maison de l’Orient Méditerranéèn, 33. Maison de l’Orient Méditerranéen Jean Pouilloux, Lion, pp 65–83

  • Freestone IC, Bimson M, Buckton D (1988) Compositional categories of byzantine glass tesserae. In: Von Saldern A (ed) Annales du 11e Congres de l’Association Internationale pour l’Histoire du Verre, Bale, 29 août-3 septembre 1988. AIHV, Amsterdam, pp 271–280

  • Freestone IC, Stapleton CP, Rigby V (2003) The production of red glass and enamel in the Late Iron Age, Roman and Byzantine periods. In: Entwistle C (ed) Through a glass brightly studies in Byzantine and Medieval Art and archaeology presented to David Buckton. Oxbow Books, pp 142–154

    Google Scholar 

  • Galli a, Martini M, Sibilia E, Fumagalli F (2012) The role of opacifiers in the luminescence of mosaic glass: characterization of the optical properties of cassiterite (SnO 2). Radiat Meas 47:814–819. https://doi.org/10.1016/j.radmeas.2012.02.004

    Article  Google Scholar 

  • Galli A, Martini M, Montanari C et al (2006a) TL of fine-grain samples from quartz-rich archaelogical ceramics: dosimetry using the 110 and 210°C TL peaks. Radiat Meas 41:1009–1014

    Article  Google Scholar 

  • Galli A, Martini M, Montanari C, Sibilia E (2003) The use of antimony and its implication for the luminescence properties of ancient mosaic tesserae. J Non-Cryst Solids 323:72–77. https://doi.org/10.1016/S0022-3093(03)00292-8

    Article  Google Scholar 

  • Galli A, Martini M, Sibilia E et al (2011) Dating ancient mosaic glasses by luminescence: the case study of San Pietro in Vaticano. Eur Phys J Plus 126:121–133

    Article  Google Scholar 

  • Galli A, Poldi G, Martini M et al (2006b) Study of blue colour in ancient mosaic tesserae by means of thermoluminescence and reflectance measurements. Appl Phys A Mater Sci Process 83:675–679. https://doi.org/10.1007/s00339-006-3588-y

    Article  Google Scholar 

  • Galli A, Poldi G, Martini M, Sibilia E (2007) Thermoluminescence and visible reflectance spectroscopy applied to the study of blue-green mosaic silica-glass tesserae. Phys Status Solidi Curr Top Solid State Phys 4:950–953. https://doi.org/10.1002/pssc.200673863

    Article  Google Scholar 

  • Gliozzo E, Santagostino Barbone A, D’acapito F et al (2010) The Sectilia Panels Of faragola (Ascoli Satriano, Southern Italy): a multi-analytical study of the green, marbled (green and yellow), blue and blackish glass slabs. Archaeometry 52:389–415. https://doi.org/10.1111/j.1475-4754.2009.00493.x

    Article  Google Scholar 

  • Gorin-Rosen Y (2000) The ancient glass industry in Israel: summary of the finds and new discoveries. Trav la Maison l’Orient méditerranéen 33:49–63

    Google Scholar 

  • Hatton GD, Shortland AJ, Tite MS (2008) The production technology of Egyptian blue and green frits from second millennium BC Egypt and Mesopotamia. J Archaeol Sci 35:1591–1604. https://doi.org/10.1016/j.jas.2007.11.008

    Article  Google Scholar 

  • Henderson J (2000) The science and archaeology of materials. Routledge, London

    Google Scholar 

  • Henderson J (2013) Ancient glass: an interdisciplinary exploration. University Press, Cambridge

    Google Scholar 

  • Hong DG, Kim MJ, Choi JH et al (2006) Equivalent dose determination of single aliquot regenerative-dose (SAR) protocol using thermoluminescence on heated quartz. Nucl Instruments Methods Phys Res B 243:174–178

    Article  Google Scholar 

  • Hughes MJ (1972) A technical study of opaque red glass of the Iron Age in Britain. In: Proceedings of the Prehistoric Society, vol 38, pp 98–107

    Google Scholar 

  • James L, Soproni E, Bjornolt B (2013) Mosaics by numbers. Some preliminary evidence from the Leverhulme Database. In: Entwistle C, L. J (eds) New light on old glass: recent research on byzantine mosaics and glass. The British Museum, London, pp 310–328

  • Johnston-Feller R (2001) Color science in the examination of museum objects: nondestructive procedures. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  • Madsen AT, Murray AS (2009) Optically stimulated luminescence dating of young sediments: a review. Geomorphology 109:3–16

    Article  Google Scholar 

  • Marii F (2013) Glass tesserae from the Petra Church. In: Faulks S (ed) New light on old glass: recent research on byzantine mosaics and glass. The British museum, London, pp 11–24

  • Marii F, Rehren T (2009) Archaeological coloured glass cakes and tesserae from the Petra Church. In: Janssens K et al (eds) Annales du 17e Congres del’Association Internationale pour l’Histoire du verre, pp 295–300

    Google Scholar 

  • Mason RB (2004) Shine like the sun: lustre-painted and associated pottery from the medieval Middle East. Royal Ontario Museum, Toronto

    Google Scholar 

  • Mason RB, Tite MS (1997) The beginning of tin-opacification of pottery glazes

  • McKenzie J (2007) The architecture of Alexandria and Egypt: 300 BC - AD 700. Yale University Press, New Haven

    Google Scholar 

  • Merrifield M (1849) Original treatises on the arts of painting. Murray, London

    Google Scholar 

  • Mirti P, Davit P, Gulmini M (2002) Colourants and opacifiers in seventh and eighth century glass investigated by spectroscopic techniques. Anal Bioanal Chem 372:221–229. https://doi.org/10.1007/s00216-001-1183-9

    Article  Google Scholar 

  • Möncke D, Papageorgiou M, Winterstein-beckmann A, Zacharias N (2014) Roman glasses coloured by dissolved transition metal ions: redox-reactions, optical spectroscopy and ligand field theory. J Archaeol Sci 46:23–36. https://doi.org/10.1016/j.jas.2014.03.007

    Article  Google Scholar 

  • Moretti C, Hreglich S (2005) Tecniche di produzione dei vetri opachi impiegate dai vetrai veneziani tra il XV e il XX secolo. Riv della Stn Sper del Vetro 5:15–27

    Google Scholar 

  • Moropoulou A, Zacharias N, Delegou ET et al (2016) Analytical and technological examination of glass tesserae from Hagia Sophia. Microchem J 125:170–184. https://doi.org/10.1016/j.microc.2015.11.020

    Article  Google Scholar 

  • Nenna M-D, Picon M, Vichy M (2000) Ateliers primaires et secondaires en égypt a l’époque gréco-romaine. In: Nenna M-D (ed) La route du verre, Lyon, pp 97–112

  • Neri E, Jackson M, O’Hea M et al (2017) Analyses of glass tesserae from Kilise Tepe: new insights into an early Byzantine production technology. J Archaeol Sci Reports 11:600–612. https://doi.org/10.1016/j.jasrep.2016.12.036

    Article  Google Scholar 

  • Penel G, Cau E, Delfosse C et al (2003) Raman microspectrometry studies of calcified tissues and related biomaterials. Dent Med Probl 40:37–43

    Google Scholar 

  • Poolton NRJ, Bøtter-Jensen L, Rink WJ (1995) An optically stimulated luminescence study of flint related to radiation dosimetry. Radiat Meas 24:551–555

    Article  Google Scholar 

  • Ricciardi P, Colomban P, Tournie A, Milande V (2009) Nondestructive on-site identification of ancient glasses: genuine artefacts, embellished pieces or forgeries? J Raman Spectrosc 40:604–617. https://doi.org/10.1002/jrs.2165

    Article  Google Scholar 

  • Santagostino Barbone A, Gliozzo E, D’Aacpito F et al (2008) The Sectilia panels of Faragola (Ascoli Satriano, southern Italy): a multi-analytical study of the red, orange and yellow glass slabs. Archaeometry 50:451–473. https://doi.org/10.1111/j.1475-4754.2007.00341.x

    Article  Google Scholar 

  • Schibille N, Degryse P, Corremans M, Specht CG (2012) Chemical characterisation of glass mosaic tesserae from sixth-century Sagalassos (south-west Turkey): chronology and production techniques. J Archaeol Sci 39:1480–1492. https://doi.org/10.1016/j.jas.2012.01.020

    Article  Google Scholar 

  • Schibille N, McKenzie J (2014) Glass tesserae from Hagios Polyeuktos, Costantinopole: their early Bizantine affiliations. In: Keller D, Price J, Jackson C (eds) Neighbours and successors of Rome. Oxbow books, Oxford, pp 114–127

  • Serra CL, Silvestri A, Molin G (2009) Archaometric characterization. In: Lafli E (ed) Late Antique/Early Byzantine glass in the eastern Mediterranean. Ege Yayinlari, Izmir, pp 171–183

    Google Scholar 

  • Shugar AN (2000) Byzantine opaque red glass tesserae from Beit Shean, Israel. Archaeometry 42:375–384. https://doi.org/10.1111/j.1475-4754.2000.tb00888.x

    Article  Google Scholar 

  • Silvestri A, Nestola F, Peruzzo L (2016) Multi-methodological characterisation of calcium phosphate in late-Antique glass mosaic tesserae. Microchem J 124:811–818. https://doi.org/10.1016/j.microc.2015.10.026

    Article  Google Scholar 

  • Silvestri A, Tonietto S, Molin G, Guerriero P (2014) The palaeo-Christian glass mosaic of St. Prosdocimus (Padova, Italy): Archaeometric characterisation of tesserae with copper- or tin-based opacifiers. J Archaeol Sci 42:51–67. https://doi.org/10.1016/j.jas.2013.10.018

    Article  Google Scholar 

  • Silvestri A, Tonietto S, Molin G, Guerriero P (2012) The palaeo-Christian glass mosaic of St. Prosdocimus (Padova, Italy): archaeometric characterisation of tesserae with antimony- or phosphorus-based opacifiers. J Archaeol Sci 39:2177–2190. https://doi.org/10.1016/j.jas.2013.10.018

    Article  Google Scholar 

  • Suchanek W, Yashima M, Kakihana M, Yoshimura M (1997) β-Rhenanite (β-NaCaPO4) as weak Inerface for hydroxyapatite ceramics. Key Eng Mater 132–136:2025–2028. https://doi.org/10.4028/www.scientific.net/KEM.132-136.2025

    Article  Google Scholar 

  • Tite M, Pradell T, Shortland A (2008) Discovery, production and use of tin-based opacifiers in glasses, enamels and glazes from the Late Iron Age onwards: a reassessment. Archaeometry 50:67–84. https://doi.org/10.1111/j.1475-4754.2007.00339.x

    Article  Google Scholar 

  • Turner WES, Rooksby HP (1959) A study of the opalising agents in opal glasses throughout three thousand four hundred years. Glas Berichte 32K:17–28

    Google Scholar 

  • Uboldi M, Verità M (2003) Scientific analyses of glasses from Late Antique and Early Medieval archaeological sites in northern Italy. J Glass Stud:115–137

  • van der Werf I, Mangone A, Giannossa LC et al (2009) Archaeometric investigation of Roman tesserae from Herculaneum (Italy) by the combined use of complementary micro-destructive analytical techniques. J Archaeol Sci 36:2625–2634. https://doi.org/10.1016/j.jas.2009.07.015

    Article  Google Scholar 

  • Vandini M, Arletti R, Cirelli E (2014) Five centuries of mosaic glass at Saint Severus (Classe, Ravenna). OCNUS 22:91–108

    Google Scholar 

  • Verità M (2000) Tecniche di fabbricazione dei materiali musivi vitrei: indagini chimiche e mineralogiche. In: E. B, Gioffredi-Superbi F, Pagliarulo G (eds) Medieval mosaics: light, color, materials. Silvana Editoriale, Milano, pp 47–64

  • Verità M (2010) Glass mosaic tesserae of the Neonian Baptistry in Ravenna: nature, origin, weathering causes and processes. In: Fiori C, Vandini M (eds) Ravenna Musiva 22–24 October 2009. Ante Quem, Bologna, pp 89–103

  • Verità M, Profilo B, Vallotto M (2002) I mosaici della Basilica dei Santi Cosma e Damiano a Roma: studio analitico delle tessere vitree. Riv della Stn Sper del Vetro 5:13–24

    Google Scholar 

  • Verità M, Santopadre P, De Palma G (2017) Scientific investigation of glass mosaic tesserae from the 8th century AD archaeological site of Qusayr’ Amra (Jordan). Boll ICR 32:7–18

    Google Scholar 

  • Welter N, Schussler U, Kiefer W (2007) Characterisation of inorganic pigments in ancient glass beads by means of Raman microscpectroscopy, microprobe analysis and X-ray diffractometry. J Raman Spectrosc 38:113–121

    Article  Google Scholar 

  • Wypyski MT (2005) Technical analysis of glass mosaic tesserae from Amorium. Dumbart Oaks Pap 59:183–192

    Article  Google Scholar 

  • Wypyski MT, Becker I (2004) Glassmaking technology at Antioch. In: The Arts of Antioch. Princeton University Press, Worcester, pp 115–175

    Google Scholar 

  • Zacharias N, Beltsios K, Oikonomou A et al (2008) Thermally and optically stimulated luminescence of an archaeological glass collection from Thebes, Greece. J Non-Cryst Solids 354:761–767

    Article  Google Scholar 

  • Zhao HX, Li QH, Liu S, Gan FX (2013) Characterization of microcrystals in some ancient glass beads from china by means of confocal Raman microspectroscopy. J Raman Spectrosc 44:643–649. https://doi.org/10.1002/jrs.4239

    Article  Google Scholar 

  • Zimmerman J (1971) The radiation induced increase of thermoluminescence sensitivity of fired quartz. J Phys C 4:3277–3291

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the directors of the Jericho Mafjar Project, Prof. Donald Whitcomb (Oriental Institute University of Chicago, Department of Near Eastern Languages and Civilizations) and Prof. Hamdan Taha (Palestinian Department of Antiquities) for having authorised the present study. We are grateful to Dr. Enrico Cirelli for providing the samples. The authors are also grateful to Mathilde Patin for her kind collaboration on preliminary SEM-EDS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Vandini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorentino, S., Vandini, M., Chinni, T. et al. Colourants and opacifiers of mosaic glass tesserae from Khirbet al-Mafjar (Jericho, Palestine): addressing technological issues by a multi-analytical approach and evaluating the potentialities of thermoluminescence and optically stimulated luminescence dating. Archaeol Anthropol Sci 11, 337–359 (2019). https://doi.org/10.1007/s12520-017-0555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-017-0555-9

Keywords

Navigation